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Abstract 

An asymptotic solution for the problem of diffraction of a plane wave by a rotating semi- 
infinite thin barrier is presented. Expressions are obtained for the wave amplitude and a 
particular discussion concerns the parts of the solution due to the rotational effect. 

1. Introduction 

In this paper the diffraction of  long gravity water waves approaching a 
semi4nfmite vertical barrier is discussed. The whole system is considered in 
rotat ion.  Such problems arise from certain aspects of  an investigation into the 
origin of  s torm surges. 

The direction of  the incident wave is arbi trary and i t  is shown that a wave 
due to rotat ion arises in the shadow region and travels along the barrier without 
at tenuation.  Crease (1956) has considered the case of  an incident wave from 
a direction perpendicular to the barrier by using the Wiener-Hopf  technique 
and constructing an appropriate  integral equation. The method used here is 
also based on the Wiener-Hopf  technique but  in a simpler form and without  
the necessity of  an integral equation formulation.  The solution, when the 
rotat ion is taken to be zero, represents the usual diffraction effect in acoustics 
and electromagnet ism[Sommerfeld 's  problem, cf. Copson (1946)] .  

2. Formulation o f  the Problem 

The lmearized equations of  mot ion  of  a fluid sheet of constant depth h in 
the long-wave theory assuming a t ime factor e - i~ t ,  are, in Cartesian co- 
ordinates, the  following (Proudman,  1953): 

ox oy 
(2.1a) 
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hk2u2 = --fOJ---~t x - i 6 o i ~  (2 . lb)  

(v  2 + k2)¢t = 0 (2.1c) 

Here q~t is the total elevation of the free surface above its mean level, (ul,  u2) 
are the components of  the velocity in the horizontal (x,y) plane, which are 
functions of  x, y, t o n l y , f  is the Coriolis parameter equal to 2 ~  sin P, where 

is the angular velocity of  the earth and 0 the north latitude, and g the 
gravity acceleration. Also k 2 c  2 = 60 2 - f 2  with 6o > f >  0 and c 2 = gh. 

Suppose that  a plane wave 

(~i = exp(- ikx  cos 0 - iky sin 0), 0 < 0 < rr (2.2) 

which satisfies equation (2.1 c), is incident on a vertical rigid barrier of  zero 
thickness along the negative x axis. We define the function q~ by  the equation 

~t = ¢ + ¢i (2.3) 

everywhere in the field. For convenience we can put 

f = kc sinh/3~ 6o = kc cosh/3 

where/3 is real, since 6o/kc > 1. The problem is to find a solution ¢ of  
equation (2.1 c) satisfying the following conditions: 

3¢ 3¢ 
;-- -itanhfl=--= ik(sin 0 - i tanh/3" cos 0) exp(-ikx cos 0), 
oy ox 

and 
~x,O+O)=~x,O-O), x > O  

3¢ - i  tanh /3 " 3¢ = 3~- tanh/3"3-xx y = o + o '  
\ 3 y  y=o  - o  

Also we suppose that  

and 

y = O + O , x < O  

(2.4) 

(2.s) 

(2.6) 

~3y'h = O(x-  V2) as x ~ 0 + 0, y = 0 (2.7b) 

In the following we assume that co is complex with a small positive 
imaginary part 6o 2 (i.e., w = 6ol + iw2,6ol >> co2 > 0) and this implies that 
k must also be complex with a small positive imaginary part  (i.e., k = k l  + ik> 
kx >> k2 > 0). This assumption is necessary for the application of  the method 
of  solution followed. The solution is obtained from the final results by taking 
6o2 -+ 0 + 0, which implies k 2 -+ 0 + 0. 

q5 = 0(1)  a s x  -+0 -+O,y = 0  (2.7a) 
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It can be shown that  for any y / >  0 

(a) i ,l = 0 [exp(k2x cos 0 - k2y sin 0)] for - ~  < x < - y  cot 0 

(b) = O(e -k2  txI) 

and also for any y ~< 0 

(c)  1¢1 = o( eT-Ox +y sin O) 

where 

and 

(d) 

for - y  cot 0 < x  < 

for - ¢ ~ < x  < y  cot 0 

r 0 = m i n  k 2 c o s O  and~- -2=k2  1 <~k 2 
; 5012 

l~l=O(e -k2t~i) f o r y  cotO < x <  o° 
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Figure 1. The path of  integration P and the cuts in the complex c~-plane. 
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Therefore the two-sided complex Fourier transform ~(a, y) of ~x,  y) in x, 
defined by 

o o  

~(oe,y)= f ~)(x, y)ei~X dx, ~= o + ir(o, r real) (2.8) 

exists in the whole (x, y)  plane and is regular in the strip -k2 < r < ro 
(Figure 1). It is also found that ~(~, y) is bounded as lY I -+ ~o for any ol in the 
above strip of regularity. 

We introduce, further, the following one-sided complex Fourier transforms: 

• +(~, y )  = ; ~x ,  y)e i~x dx (2.9a) 
0 

and 
0 

cb_(a, y )  = ~ ~(x, y)e  iax dx (2.9b) 

which exist in the whole (x, y) plane and are regular in r > -k2  and r < to, 
respectively. 

3. The Functional Equation 

We now proceed to derive an appropriate functional equation, called the 
Wiener-Hopf equation, of the problem. 

Applying the Fourier transform to equation (2.1c), which also holds for q~, 
and taking into account its behavior as Ix ] -+ ~ ,  assuming, further, that 
O(~/Sx has similar behavior for Ix l -+ ~,  we get 

dZdP(~'Y)-3,2c~(~,y)=O , - - k 2 < r < T  o (3.1) 
dy 2 

where 
3' = (rx ~ - k2) 1/2 (3.2) 

The function 2: has branch points at a = +-k; the cuts from these points are 
taken symmetrical to each other with respect to the origin, outside the strip 
Ir [ < k2 and along the straight line passing through these branch points. To 
obtain the physically acceptable solution of the problem, viz., the solution 
that satisfies all the requirements of Section 2 and further obeys Sommerfeld's 
"radiation condition" at infinity (1964), a suitable branch of the primarily 
muttivalued function (a z - k2) 1/2 is specified by the author (Kapoulitsas, 
1975). 

We mention here that by this specification the real part of ~/is positive 
inside the strip t~'l <(k2- 

The general solution of (3.2), regular in the strip - k  2 < r < ro and 
bounded for lY I -+ '~, is 

(b(o~, y)  = A(~)e -Ty ,  y > 0 (3.3a) 

= B(tx)e 7y, y <<. 0 (3.3b) 
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Moreover from (2.4) 

• " ( a ,  0 + 0) - a tanh fiq~_(a, 0 + 0) - i tanh/3- ~b(0, 0) 

k(sin 0 - i tanh t3- cos O) = k sin(O - i/3) 1 
(3.4) 

o~ - k cos 0 cosh t3 "a - k cos 0 

provided that q~(0, 0 + 0) = q~(0, 0 - 0) = q~(0, 0). The primes on O's are taken to 
mean the derivatives with respect to y. Also from (2.6) we get 

q;(a ,  0 --- 0) - a tanh/3 • qS(a, 0 - 0) = ~5'(a, 0 + 0) - a tanh/3, qs(a, 0 + 0) 

and using equation (3.3) we obtain 

7 + a  tanh/3 
B - A (3.S) 

- 7  + a t a n h / 3  

Next we define ~+(a)  as 

't*+(a) - ' ~ _  (a, 0 - 0) - a tanh t3" ¢5+(a, 0 - 0) + i tanh p .  ~b(0, 0) 

= qs'+(a, 0 + 0) - a tanh/3. ~+(a,  0 + 0) + i tanh/3. ~(0, 0) (3.6) 

which is regular in the upper half-plane r > - k  2 . 
By virtue o f  (2.5), (3.3) and (3.4) 

'It+(o~) = - A ( 7  + a t a n h  13) - 

N o w  let us define 

k sin(0 - i/3) 

cosh/3(a - k cos 0) 
(3.7) 

F _ ( a )  = ½ {~_(a ,  0 - 0) - ~_(ct, 0 + 0)} (3.8) 

The function F _ ( a )  is regular in the lower half-plane r > to, and using (3.3) 
and (3.5), we have 

F _ ( a )  = 3' .A (3.9) 
- 7  + c~ tanh/3 

Eliminating A between (3.7) and (3.9) we get finally 

a2 _ k 2 cosh 2/3 1 k sin(0 - i/3) 
- - .  F _ ( a )  - (3.10) 

~+(0t) = cosh2 3 7 cosh/3(or - k cos 0) 

Equation (3.10) is a functional equation of  the Wiener-Hopf type. 

4. Solution of the Functional Equanon 

Equation (3.10) contains two unknown functions ~+(a)  and F_(c  0 which 
are regular in an upper and a lower half-plane, respectively, these half-planes 
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having a common strip. To determine bo th  these unknown functions we write 
the equation as 

(OZ "1" k) 1/2 k sin(0 - i /3 )  / [ (a+k) '/2 (k cos 0 + k )  1/2 ] 
,i,+(a) 

( a -  kcos/3) sin(0 -- //3) ( k c o s 0  + k )  1/2 

=F-(cO ( a - k )  l j2 cosh~ "(a-kcosO)(cosO+coshfi) (4.1) 

In equation (4.1) the left-hand side is regular in the lower half-plane T <  7o, 
while the right-hand side is regular in the upper halgplane ~- > - k2. Therefore 
both  sides are regular in the strip - k 2  < 7 < To and, by  analytic continuation, 
they define a funct ion,P(a)  say, which is regular over the entire a-plane. 

To determine P(a)  we have recourse to the asymptotic  behavior of  all the 
functions in (4.1). 

Even though ~ + ( a )  is as yet unknown, its asymptotic  behavior is governed 
by the edge conditions [equation (2.7)] ,  since by  applying the appropriate 
Abel theorem we find that, according to definition (3.6), 

• +(a) = O(1) as a -+ ~ with r > - k 2  (4.2) 

Similarly from the edge condition (2.7a) and the definition (3.8) we find 

F_(a)=O(a -1) a s a  ->~° w i t h r < %  (4.3) 

Thus both  sides of  (4 . I )  are of  order la [ -1/2 as a --> oo in their appropriate 
half-planes. It then follows f rom an extension to Liouville's theorem on 
polynomials that P(a) is a polynomial of  order less than ( -½) and therefore a 
constant. This constant is zero because P(a) = O( [a [-:/2) as [al -> oo. Hence 

- k  sin(0 - i/3)(a + k cosh/3) [ (c~ + k) 1/2 

Therefore f rom (3.8) 

7 - a tanh/3 

and from (3.5) 

where 

( k c o s 0  +k) 1/2 I 
; k-- o h/3 j 

(4.4) 

A = E  
(0~ + k)l/2(o~ - k cosh/3)(o~ - k cos  0 )  

(4.5a) 

g ~ - g  7 + a tanh/3 

(0~ + k)l/2(0~ - k cosh/3)(c~ - k cos 0)  
(4.5b) 

-s in(0  - i/3)(k cos 0 + k) I/2 cosh/3 
E =  

cos 0 + cosh 3 

By virtue of  equations (4.5) the Fourier transform of the solution of  the 
problem, given by  equation (3.3), is known. 

(4.6) 
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5, The FieM Solution 

To find the field solution ~ x ,  y )  from its Fourier transform we have to 
invert ~5(re, y )  using the formula 

oo + i 7 -  

1 
~ ( x , Y ) = ~  .f dP(re, y)e-iC~x dre (5.1) 

- -  ~ + i 7 "  

The path P of the above integration is the straight line r = const, - k  2 < r < ro 
(Figure 1). 

We shall determine ~ x ,  y )  for y >/0 and y ~< 0 separately. 

5.1 Region A ( y / >  0, - ~  < x < ~) .  In this region we have, according to 
(3.3a) and (4.5a), 

(7 - a tanh ~)e - v y  
~(re, y )  = E  (o~ + k)  1/2 (re - k cosh/3)(re - k c o s  0 )  (5.2) 

The singularities of  cI,(re,y) are the simple pole at re = k cos 0 and the branch 
points at re = +-k. 

Because of  the existence of  the above branch points the integral (5.1) can 
be evaluated only asymptotically for large r = (x 2 + y 2 ) i / 2  by applying the 
me thodof  steepest descent (Copson, 1970). Yet, we cannot apply this method 
directly to (5.2) since the pole at re = k cos 0 may be near the saddle point. To 
avoid this difficulty we split oh(re, y )  into two parts 'b 1 (re , y )  and ~b2(re , y )  so 
that 

q), (re, y )  = E  (re + k)l/2Ca +-- lc c o ~ r e  - k cos O)- 

(k cos0 - k )  1/2 / (5.3) 

-a , - :  (re -~-) - iT~--~-ccos  0) j e - T y  

and 
(kcos0  - k) 1/2 e - ' l y  

q~2(°~'Y) = Ea-1 (re - k) 1/2 re - k cos 0 (5.4) 

where a-1 is the residue of  the term in the square brackets of  (5.3) at the 
pole re = k cos 0, which is found to be 

- i  s in (0  - i/3) 

cosh/3(k cos 0 + k)l/2(cos 0 - cosh/3) ' 

Consider next the transformations 

x = r cos v, lY[ = r sin v, 0 < v < rr (5.5) 
and 

re = - k  cos z, 3' = - i k  sin z (5.6) 
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where z = p + /q  (p, q real) which are applied to the integral in (5.1) and for 
the part  ~ l ( a ,  y ) ,  which has now no pole at all. 'The result is 

~l(X, y )  = ~  k f * l ( - k c o s z ,  y )  sinzeigrc°s(z-V)dz (5.7) 
lp t 

From now on we take k 2 -+ 0+ to avoid unnecessary complications. The 
transformed integration pa th  I "  consists o f  the segments E'B'A'D' shown in 
Figure 2. The saddle point S is at z, = v (i.e., l°s = v, qs = 0) and P'  is deformed 
to the path LSM, since it can be shown that the contribution of  the segments 
D 'L and ME' into the integral of  (5.7) is zero as [q [ -> oo. 

B r - 

I 
I 

q 

P 

( 

I 
L J 

Figtue 2. The path of integration F' and the path of steepest descent LSM in the complex 
z-plane. 
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Since the integrand in (5.7) has no pole at all, we, following the standard 
procedure of the method of steepest descent, obtain 

1 E - i s i n ( v  + i~) 

q~l(x, Y) = 2---~" (cos v + cos 0) k cosh/3(-k cos v + k)I/2(COS l/ + cosh/~) 

+ a - i  k ( - k  cos v - k) 1/2] sin v" e i(~-~r/4) (5.8) 

The part q51 (x, y)  of the solution ~x ,  y)  in this region is entirely due to the 
rotational effect and represents a cylindrical Poincar6-type wave radiated from 
the origin with a phase velocity ~o/k. This wave disappears for f = 0. 

The contribution to the integral (5.1) from the second part qs~(a; y)  of 
cb(a, y )  is 

sin(0 -//3) (k cos0 -- k)  1/2 e-TY-i°~x 
¢2(X, y) - sin(0 +i/3) (a -- k)i/2(a - kcosO) da 

--~+iT 

sin (0 - i/5) 
- s i ~  + i~) ¢°(x' y) (5.9) 

where the term q~o(X, y), equal to the quantity in the square brackets of (5.9), 
expresses the diffraction by the considered semi-infinite barrier when no 
rotation exists (Sommerfeld's problem) and has been fully discussed in the 
past (cf. Noble, 1958). Thus q~2(x, y)  apart from a phase change is the part of 
the solution that is not affected by the rotational effect. 

5.2 Region B (y ~< 0, - ~ o < x  < oo). From equations (3.3b) and (4.5b) we 
get 

~(a, y)  = -E(7  + a tanh ~) e_Tty i 
(0~ + g ) l / 2 ( a - g  cosh~)(ot - g cos 0)  

and following the same lines as in the case of region A we find that 

~ (a ,  y )  = ~3(Ot, y )  + ~ 4 ( a , y )  
where 

y~ E l [  - 7 - a t a n h ¢  k cos 0)] 

and 
ta - x) (oe - k cos 0)J 

(k cos 0 - k) 1/2 

(5.10) 

~4(a ,y)  = E b _ l  (a - k) l/2(a - k cos O) e-'rtYt (5.11) 
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where b _  1 is the residue of  the term in the square brackets of  (5.10) of  the 
pole a = k cos 0 and which is 

i sin(0 + i13) 
cosh 13(k cos 0 + k)l/2(cos 0 - cosh/3) 

• a ( a , y )  has no pole near the saddle point, but it has a pole P at o~ = k cosh t3. 
Next,  following the same lines of  procedure as in the case of  region A and 
taking into account that the above pole is transformed into P ' ,  Figure 2, which 
is captured by  the shaded region only if rr > v > cos- l (kc/¢o) ,  where 
0 < c o s - l ( k c / w )  < 7r/2, we obtain for ¢3(x, y )  

¢3(x, y )  = ¢~ + Ck" H(v - Vo) 

where 

1 E [ i sin(v - i~) 

~r = 2zr" cos v + cos 0 [ k  cosh 13(-k cos v + k)l /2(cos v + COS ~)  

+ b - 1  ( - k  cos v - k)l/2(cos v + COS ~b) sin v e i (kr - • /4)  

(5.12a) 

sinh 13 exp ( - / x  cosh 13 + y sinh 13) 
Ck 2i(Re S)p; 

- 2 i E ( k  cosh t3 + k)l/2(cosh 13 - cos 0) 
(5.12b) 

H(v - Vo) is the Heaviside unit function and v o = rr - c o s  -1 (kc/o~). #)r is a 
cylindrical wave (Poincar6 wave) radiated from the origin and ~g is a Kelvin 
wave (Proudman, 1953) traveling along the negative x axis. Both Cr and q~k 
are a consequence of  the rotational effect and disappear when f = 0. 

Lastly ¢4(x, y) ,  corresponding to the inverse of  q54(~ , y ) ,  is found to be 
equal to - ¢ 0  and represents the pure effect of diffraction of a nonrotating 
semi4nfinite barrier. 

In conclusion the solution of the problem for y <~ 0 is given by 

¢(x, y )  = ~r + Ck " H(v - Vo) - #)o (5.13) 

6. Discussion 

In the above procedure we have presupposed that f i s  positive, that  is, in 
the sense o f  increasing v. If  the rotation takes place in the opposite sense, f 
wilt be negative. Then the created Kelvin wave appears behind the barrier and 
all the above results can be extended to negative values o f f ,  these results being 
referred to the frame of reference reflected in the line y = 0. 

Regarding the Kelvin wave ~k appearing in the region mentioned, which is 
in the front o f  the barrier (for f >  0), the barrier being in the left half of  the 
x axis, we could note that this region is the only part of  the field where 
traveling waves are not attenuated away from the edge of the barrier. If  the 
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barrier is in the right half o f  the x axis (x > 0), we should expect  a Kelvin 
wave traveling down behind the barrier,  and this leads to the remarkable con- 
clusion that  for a barrier of  finite length, as an oblong island in the  sea, there 
will be a circulation of  progressive waves round the barrier in the clockwise 
direction. Thus a certain amount  of  energy will be t rapped near the barrier as 
Crease has observed (1956). 

In equation (5.13) the terms $3 and $o are of  order O(r -1/2) for large r, 
while the term ~k is of  order O(e -y/cly I). Thus, when y is small as r ~ oo 
(region near the barrier),  the leading term in (5.13) is the Kelvin wave since it 
does not diminish with the distance in the x direction; when, for r ~ 0% also 
y ~ _0% as happens for most values of  v, ~3 and 4~0 become dominant terms 
in (5.22) expressing asymptotical ly the surface elevation considered. 
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